澳门新萄京官方网站-www.8455.com-澳门新萄京赌场网址

澳门新萄京官方网站复苏和复制的需求,Mysql锁的

2019-05-25 作者:数据库网络   |   浏览(177)

1. 恢复和复制的需要,对innodb锁机制的影响

获取锁等待情况
可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺:mysql> show status like 'Table%'; ---------------------------- ---------- | Variable_name | Value | ---------------------------- ---------- | Table_locks_immediate | 105 || Table_locks_waited | 3 | ---------------------------- ---------- 2 rows in set (0.00 sec) 可以通过检查Innodb_row_lock状态变量来分析系统上的行锁的争夺情况:mysql> show status like 'innodb_row_lock%'; ---------------------------------------- ---------- | Variable_name | Value | ---------------------------------------- ---------- | Innodb_row_lock_current_waits | 0 || Innodb_row_lock_time | 2001 || Innodb_row_lock_time_avg | 667 || Innodb_row_lock_time_max | 845 || Innodb_row_lock_waits | 3 | ---------------------------------------- ---------- 5 rows in set (0.00 sec) 另外,针对Innodb类型的表,如果需要察看当前的锁等待情况,可以设置InnoDB Monitors,然后通过Show innodb status察看,设置的方式是: CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB;监视器可以通过发出下列语句来被停止: DROP TABLE innodb_monitor;设置监视器后,在show innodb status的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以我们在确认问题原因之后,要记得删除监控表以关闭监视器。或者通过使用--console选项来启动服务器以关闭写日志文件。什么情况下使用表锁
表级锁在下列几种情况下比行级锁更优越:很多操作都是读表。
在严格条件的索引上读取和更新,当更新或者删除可以用单独的索引来读取得到时:
UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;
SELECT 和 INSERT 语句并发的执行,但是只有很少的 UPDATE 和 DELETE 语句。
很多的扫描表和对全表的 GROUP BY 操作,但是没有任何写表。

INNODB的几种锁

锁,在现实生活中是为我们想要隐藏于外界所使用的一种工具。在计算机中,是协调多个进程或县城并发访问某一资源的一种机制。在数据库当中,除了传统的计算资源(CPU、RAM、I/O等等)的争用之外,数据也是一种供许多用户共享访问的资源。如何保证数据并发访问的一致性、有效性,是所有数据库必须解决的一个问题,锁的冲突也是影响数据库并发访问性能的一个重要因素。从这一角度来说,锁对于数据库而言就显得尤为重要。

你目前接触的mysql版本是什么?除了官方版本,还接触过其他的mysql分支版本嘛?

  mysql 通过binlog文件对增删除改等更新数据的sql语句,实现数据库的恢复和主从复制。mysql的恢复机制(复制其实就是在slave mysql不断做基于binglog的恢复)特点有如下:
  (1) mysql 的恢复是sql语句级的,也就是重新执行binlog中的sql语句, oracle数据库则是基于数据库文件块的。
  (2) mysql 的binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这也与oracle不同,oracle是按照系统更新号(SCN)来恢复数据的。

什么情况下使用行锁
行级锁定的优点:当在许多线程中访问不同的行时只存在少量锁定冲突。
回滚时只有少量的更改。
可以长时间锁定单一的行。

共享锁(S-LOCKING)允许一个事务去读一行,阻止其它事务获得相同数据集的排它锁

MySQL锁

产生分支的原因

2.  insert into 和create table对于原表也会加共享锁   下面演示原表加锁的例子:

行级锁定的缺点:比页级或表级锁定占用更多的内存。
当在表的大部分中使用时,比页级或表级锁定速度慢,因为你必须获取更多的锁。
如果你在大部分数据上经常进行GROUP BY操作或者必须经常扫描整个表,比其它锁定明显慢很多。
用高级别锁定,通过支持不同的类型锁定,你也可以很容易地调节应用程序,因为其锁成本小于行级锁定。

排它锁(X-LOCKING)允许获得排它锁的事务更新数据,阻止其它事务取得相同数据集的共享读锁和排它锁

相对于其他的数据库而言,MySQL的锁机制比较简单,最显著的特点就是不同的存储引擎支持不同的锁机制。根据不同的存储引擎,MySQL中锁的特性可以大致归纳如下:

许多开发人员认为有必要将其拆分成其他项目,并且每个分支项目都有自己的专长。该需求以及Oracle对核心产品增长缓慢的担忧,导致出现了许多开发人员感兴趣的子项目和分支

会话1

会话2

SET autocommit=0;

SELECT * FROM city WHERE CityCode='003'

city_id      country_id        cityname CityCode

103  2       杭州         003

SET autocommit=0;

SELECT * FROM city WHERE CityCode='003'

city_id      country_id        cityname CityCode

103  2       杭州         003

INSERT INTO  cityNew

SELECT  * FROM city WHERE CityCode='003'

共 1 行受到影响

 

 

UPDATE city SET CityCode='004' WHERE CityCode='003'

等待超时

Lock wait timeout exceeded; try restarting transaction

Commit;

 

 

Commit;

insert …select …带来的问题
当使用insert...select...进行记录的插入时,如果select的表是innodb类型的,不论insert的表是什么类型的表,都会对select的表的纪录进行锁定。对于那些从oracle迁移过来的应用,需要特别的注意,因为oracle并不存在类似的问题,所以在oracle的应用中insert...select...操作非常的常见。例如:有时候会对比较多的纪录进行统计分析,然后将统计的中间结果插入到另外一个表,这样的操作因为进行的非常少,所以可能并没有设置相应的索引。如果迁移到mysql数据库后不进行相应的调整,那么在进行这个操作期间,对需要select的表实际上是进行的全表扫描导致的所有记录的锁定,将会对应用的其他操作造成非常严重的影响。究其主要原因,是因为mysql在实现复制的机制时和oracle是不同的,如果不进行select表的锁定,则可能造成从数据库在恢复期间插入结果集的不同,造成主从数据的不一致。如果不采用主从复制,关闭binlog并不能避免对select纪录的锁定,某些文档中提到可以通过设置innodb_locks_unsafe_for_binlog来避免这个现象,当这个参数设置为true的时候,将不会对select的结果集加锁,但是这样的设置将可能带来非常严重的隐患。如果使用这个binlog进行从数据库的恢复,或者进行主数据库的灾难恢复,都将可能和主数据库的执行效果不同。因此,我们并不推荐通过设置这个参数来避免insert...select...导致的锁,如果需要进行可能会扫描大量数据的insert...select操作,我们推荐使用select...into outfile和load data infile的组合来实现,这样是不会对纪录进行锁定的。next-key锁对并发插入的影响
在行级锁定中,InnoDB 使用一个名为next-key locking的算法。InnoDB以这样一种方式执行行级锁定:当它搜索或扫描表的索引之时,它对遇到的索引记录设置共享或独占锁定。因此,行级锁定事实上是索引记录锁定。InnoDB对索引记录设置的锁定也映像索引记录之前的“间隙”。如果一个用户对一个索引上的记录R有共享或独占的锁定,另一个用户 不能紧接在R之前以索引的顺序插入一个新索引记录。这个间隙的锁定被执行来防止所谓的“幽灵问题”。可以用next-key锁定在你的应用程序上实现一个唯一性检查:如果你以共享模式读数据,并且没有看到你将要插入的行的重复,则你可以安全地插入你的行,并且知道在读过程中对你的行的继承者设置的next-key锁定与此同时阻止任何人对你的行插入一个重复。因此,the next-key锁定允许你锁住在你的表中并不存在的一些东西。隔离级别对并发插入的影响
REPEATABLE READ是InnoDB的默认隔离级别。带唯一搜索条件使用唯一索引的SELECT ... FOR UPDATE, SELECT ... LOCK IN SHARE MODE, UPDATE 和DELETE语句只锁定找到的索引记录,而不锁定记录前的间隙。用其它搜索条件,这些操作采用next-key锁定,用next-key锁定或者间隙锁定锁住搜索的索引范围,并且阻止其它用户的新插入。在持续读中,有一个与READ COMMITTED隔离级别重要的差别:在这个级别,在同一事务内所有持续读读取由第一次读所确定的同一快照。这个惯例意味着如果你在同一事务内发出数个无格式SELECT语句,这些SELECT语句对相互之间也是持续的。READ COMMITTED隔离级别是一个有些象Oracle的隔离级别。所有SELECT ... FOR UPDATE和SELECT ... LOCK IN SHARE MOD语句仅锁定索引记录,而不锁定记录前的间隙,因而允许随意紧挨着已锁定的记录插入新记录。UPDATE和DELETE语句使用一个带唯一搜索条件的唯一的索引仅锁定找到的索引记录,而不包括记录前的间隙。在范围类型UPDATE和DELETE语句,InnoDB必须对范围覆盖的间隙设置next-key锁定或间隙锁定以及其它用户做的块插入。这是很必要的,因为要让MySQL复制和恢复起作用,“幽灵行”必须被阻止掉。如果应用是从基于ORACLE的应用迁移到MYSQL数据库的,那么建议使用该隔离级别提供数据库服务,因为该隔离级别是最接近ORACLE的默认隔离级别的,迁移可能遇到的锁问题最小。如何减少锁冲突
对Myisam类型的表:1) Myisam类型的表可以考虑通过改成Innodb类型的表来减少锁冲突。2) 根据应用的情况,尝试横向拆分成多个表或者改成Myisam分区对减少锁冲突也会有一定的帮助。对Innodb类型的表:1) 首先要确认,在对表获取行锁的时候,要尽量的使用索引检索纪录,如果没有使用索引访问,那么即便你只是要更新其中的一行纪录,也是全表锁定的。要确保sql是使用索引来访问纪录的,必要的时候,请使用explain检查sql的执行计划,判断是否按照预期使用了索引。2) 由于mysql的行锁是针对索引加的锁,不是针对纪录加的锁,所以虽然是访问不同行的纪录,但是如果是相同的索引键,是会被加锁的。应用设计的时候也要注意,这里和Oracle有比较大的不同。3) 当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,当表有主键或者唯一索引的时候,不是必须使用主键或者唯一索引锁定纪录,其他普通索引同样可以用来检索纪录,并只锁定符合条件的行。4) 用SHOW INNODB STATUS来确定最后一个死锁的原因。查询的结果中,包括死锁的事务的详细信息,包括执行的SQL语句的内容,每个线程已经获得了什么锁,在等待什么锁,以及最后是哪个线程被回滚。详细的分析死锁产生的原因,可以通过改进程序有效的避免死锁的产生。5) 如果应用并不介意死锁的出现,那么可以在应用中对发现的死锁进行处理。6) 确定更合理的事务大小,小事务更少地倾向于冲突。7) 如果你正使用锁定读,(SELECT ... FOR UPDATE或 ... LOCK IN SHARE MODE),试着用更低的隔离级别,比如READ COMMITTED。8) 以固定的顺序访问你的表和行。则事务形成良好定义的查询并且没有死锁。

INNODB还独有实现了2种锁

 

三个流行MySQL分支:Drizzle、MariaDB和Percona Server(包括XtraDB引擎)

  上面的例子中,只是简单的读取city表,相当于一个普通的select 语句,在这里innodb给city表加了共享锁,并有使用多版本数据一致性技术。原因还是为了保证恢复和复制的正确性,因为不加锁,上述语句的执行过程中,其他事务对city表做了更新操作,可能导致数据恢复结果错误。如需要演示这种可以将系统变量 innodb_locks_unsafe_for_binlog的值设置为"NO"不加共享锁(set innodb_locks_unsafe_for_binlog='on') 默认是"OFF" 。如果设置上面的值为ON, 可能会使Binlog中记录的sql执行顺序不一致,使用恢复的结果与实际的应用逻辑不符,如果进行复制,就会导致主从数据库不一致。
  如果不想设置为ON,又不希望对源表的并发更新产生影响,可以使用 into outfile 将city表导入到一个txt文件,再使用load data infile 导入到新表。使用这种间接方式不会对源city表加锁。

意向共享锁(IS)事务打算给数据行加共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁


行锁 表锁 页锁
MyISAM


BDB


InnoDB


MariaDB不仅是mysql的替代品,主要还是创新和提高mysql自有技术。

 

意向独占锁(IX)事务打算给数据行加排它锁,事务在给一个数据行加排它锁前必须先取得该表的IX锁

开销、加锁速度、死锁、粒度、并发性能

   新功能介绍

Innodb 行级别的锁基于索引实现的支持并发和一致性

  • 表锁: 开销小,加锁快;不会出现死锁;锁定力度大,发生锁冲突概率高,并发度最低
  • 行锁: 开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高
  • 页锁: 开销和加锁速度介于表锁和行锁之间;会出现死锁;锁定粒度介于表锁和行锁之间,并发度一般
  1. multi-source replication 多源复制

  2. 表的并行复制

  3. galera cluster集群

  4. spider水平分片

  5. tokuDB存储引擎

注意:

从上述的特点课件,很难笼统的说哪种锁最好,只能根据具体应用的特点来说哪种锁更加合适。仅仅从锁的角度来说的话:

XtraDB是innodb存储引擎的增强版,可用来更好地发挥最新的计算机硬件系统性能,还包含在高性能模式下的新特性。它可以向下兼容,因为它是在innodb基础上构建,所以他有更多的指标和扩展功能。而且它在cpu多核的条件下,可以更好地使用内存,时数据库性能提到更高!

1)  在不通过索引条件查询的时候,innodb使用的是表锁

表锁更适用于以查询为主,只有少量按索引条件更新数据的应用;行锁更适用于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用。(PS:由于BDB已经被InnoDB所取代,我们只讨论MyISAM表锁和InnoDB行锁的问题)

Drizzle与mysql的差别就比较大了,并且不能兼容,如果想运行此环境,就需要重写一些代码了!

2)  由于MySQL的行锁针对索引加锁,不是针对记录加的锁,所以虽然时访问不同行的记录,但是如果是使用相同的索引键,则会出现锁冲突

MyISAM表锁

 

加共享锁:select * from xx where ,….. lock in share mode

MyISAM存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。随着应用对事务完整性和并发性要求的不断提高,MySQL才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际 InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁的使用。

Question 2:

加排它锁:select * from xx where ….. for update,update delete 也是加排它锁

查询表级锁争用情况

mysql主要的存储引擎myisam和innodb的不同之处?

 

X

IX

S

IS

X

冲突

冲突

冲突

冲突

IX

冲突

兼容

冲突

兼容

S

冲突

冲突

兼容

兼容

IS

冲突

兼容

兼容

兼容

可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺:

  1. 事务的支持不同(innodb支持事务,myisam不支持事务)

  2. 锁粒度(innodb行锁应用,myisam表锁)

  3. 存储空间(innodb既缓存索引文件又缓存数据文件,myisam只能缓存索引文件)

  4. 存储结构

    (myisam:数据文件的扩展名为.MYD myData ,索引文件的扩展名是.MYI myIndex)

可以通过show full processlist,show engine innodb status等命令查看锁状态

mysql> show status like 'table%';

      (innodb:所有的表都保存在同一个数据文件里面 即为.Ibd)

也可以从视图查看锁 事务状态 information_schma 库下面

----------------------- -------

   5. 统计记录行数

innodb_trx  innodb_locks innodb_lock_waits

| Variable_name         | Value |

       (myisam:保存有表的总行数,select count(*) from table;会直接取出出该值)

innodb_trx

----------------------- -------

       (innodb:没有保存表的总行数,select count(*) from table;就会遍历整个表,消耗相当大)

Trx_id:innodb存储引擎内部唯一事务ID

| Table_locks_immediate | 2979  |

 

Trx_state:当前事务的状态

| Table_locks_waited    | 0     |

Question  3:

Trx_started:事务开始时间

----------------------- -------

Innodb的体系结构简单介绍一下?

Trx_wait_started:事务开始等待时间

2 rows in set (0.00 sec))

谈及到innodb的体系结构,首先要考虑mysql的体系结构,分为两部分mysql的server层和存储引擎层

Trx_mysql_thread_id MySQL中的线程ID show processlist 显示结果

如果Table_locks_waited的值比较高,则说明存在着较严重的表级锁争用情况。

先要跟面试官聊清楚mysql的整体方向,然后再去涉及innodb体系结构

Trx_query:事务运行的SQL语句

MySQL表级锁的锁模式

MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性如下表所示。

                                          MySQL中的表锁兼容性                

请求锁模式
         是否兼容
当前锁模式
None 读锁 写锁
读锁
写锁

可见,对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对 MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如下表所示的例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

                        MyISAM存储引擎的写阻塞读例子

session_1 session_2
获得表film_text的WRITE锁定
mysql> lock table film_text write;
Query OK, 0 rows affected (0.00 sec)

当前session对锁定表的查询、更新、插入操作都可以执行:
mysql> select film_id,title from film_text where film_id = 1001;
--------- -------------
| film_id | title       |
--------- -------------
| 1001    | Update Test |
--------- -------------
1 row in set (0.00 sec)
mysql> insert into film_text (film_id,title) values(1003,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0
其他session对锁定表的查询被阻塞,需要等待锁被释放:
mysql> select film_id,title from film_text where film_id = 1001;
等待
释放锁:
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待

Session2获得锁,查询返回:
mysql> select film_id,title from film_text where film_id = 1001;
--------- -------
| film_id | title |
--------- -------
| 1001    | Test  |
--------- -------
1 row in set (57.59 sec)

建议从三方面介绍innodb体系结构:内存----线程-----磁盘

innodb_locks

如何加表锁

MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。

给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。例如,有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计 subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:

Select sum(total) from orders;

Select sum(subtotal) from order_detail;

这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是:

Lock tables orders read local, order_detail read local;

Select sum(total) from orders;

Select sum(subtotal) from order_detail;

Unlock tables;

要特别说明以下两点内容。

  • 上面的例子在LOCK TABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面的章节中还会进一步介绍。
  • 在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

    在如下表所示的例子中,一个session使用LOCK TABLE命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。

MyISAM存储引擎的读阻塞写例子

session_1 session_2
获得表film_text的READ锁定
mysql> lock table film_text read;
Query OK, 0 rows affected (0.00 sec)

当前session可以查询该表记录
mysql> select film_id,title from film_text where film_id = 1001;
--------- ------------------
| film_id | title            |
--------- ------------------
| 1001    | ACADEMY DINOSAUR |
--------- ------------------
1 row in set (0.00 sec)
其他session也可以查询该表的记录
mysql> select film_id,title from film_text where film_id = 1001;
--------- ------------------
| film_id | title            |
--------- ------------------
| 1001    | ACADEMY DINOSAUR |
--------- ------------------
1 row in set (0.00 sec)
当前session不能查询没有锁定的表
mysql> select film_id,title from film where film_id = 1001;
ERROR 1100 (HY000): Table 'film' was not locked with LOCK TABLES
其他session可以查询或者更新未锁定的表
mysql> select film_id,title from film where film_id = 1001;
--------- ---------------
| film_id | title         |
--------- ---------------
| 1001    | update record |
--------- ---------------
1 row in set (0.00 sec)
mysql> update film set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1  Changed: 1  Warnings: 0
当前session中插入或者更新锁定的表都会提示错误:
mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
其他session更新锁定表会等待获得锁:
mysql> update film_text set title = 'Test' where film_id = 1001;
等待
释放锁
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待

Session获得锁,更新操作完成:
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (1 min 0.71 sec)
Rows matched: 1  Changed: 1  Warnings: 0

注意,当使用LOCK TABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!举例说明如下。

(1)对actor表获得读锁:

mysql> lock table actor read;

Query OK, 0 rows affected (0.00 sec)

(2)但是通过别名访问会提示错误:

mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;

ERROR 1100 (HY000): Table 'a' was not locked with LOCK TABLES

(3)需要对别名分别锁定:

mysql> lock table actor as a read,actor as b read;

Query OK, 0 rows affected (0.00 sec)

(4)按照别名的查询可以正确执行:

mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;

------------ ----------- ------------ -----------

| first_name | last_name | first_name | last_name |

------------ ----------- ------------ -----------

| Lisa       | Tom       | LISA       | MONROE    |

------------ ----------- ------------ -----------

1 row in set (0.00 sec)

内存中包含insert_buffer,data_buffer,index_buffer,redo_log_buffer,double_write

Lock_id:锁的ID

并发插入(Concurrent Inserts)

上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。

MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

  • 当concurrent_insert设置为0时,不允许并发插入。
  • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
  • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

在如下表所示的例子中,session_1获得了一个表的READ LOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该表进行并发插入操作,这里假设该表中间不存在空洞。

              MyISAM存储引擎的读写(INSERT)并发例子

session_1 session_2
获得表film_text的READ LOCAL锁定
mysql> lock table film_text read local;
Query OK, 0 rows affected (0.00 sec)

当前session不能对锁定表进行更新或者插入操作:
mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
其他session可以进行插入操作,但是更新会等待:
mysql> insert into film_text (film_id,title) values(1002,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Update Test' where film_id = 1001;
等待
当前session不能访问其他session插入的记录:
mysql> select film_id,title from film_text where film_id = 1002;
Empty set (0.00 sec)

释放锁:
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
当前session解锁后可以获得其他session插入的记录:
mysql> select film_id,title from film_text where film_id = 1002;
--------- -------
| film_id | title |
--------- -------
| 1002    | Test  |
--------- -------
1 row in set (0.00 sec)
Session2获得锁,更新操作完成:
mysql> update film_text set title = 'Update Test' where film_id = 1001;
Query OK, 1 row affected (1 min 17.75 sec)
Rows matched: 1  Changed: 1  Warnings: 0

可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行 OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。有关OPTIMIZE TABLE语句的详细介绍,可以参见第18章中“两个简单实用的优化方法”一节的内容。

MyISAM的锁调度

前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个 MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM 的调度行为。

  • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
  • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
  • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。

另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。

上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB锁问题

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。下面我们先介绍一点背景知识,然后详细讨论InnoDB的锁问题。

背景知识

1.事务(Transaction)及其ACID属性

事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
  • 一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
  • 隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
  • 持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

银行转帐就是事务的一个典型例子。

2.并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

  • 更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。
  • 脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做"脏读"。
  • 不可重复读(Non-Repeatable Reads):一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。
  • 幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

3.事务隔离级别

在上面讲到的并发事务处理带来的问题中,“更新丢失”通常是应该完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。

“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本上可分为以下两种。

  • 一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。
  • 另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度来看,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

为了解决“隔离”与“并发”的矛盾,ISO/ANSI SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡 “隔离”与“并发”的矛盾。下表很好地概括了这4个隔离级别的特性。

                                            4种隔离级别比较

读数据一致性及允许的并发副作用
隔离级别
读数据一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted)
最低级别,只能保证不读取物理上损坏的数据
已提交度(Read committed)
语句级
可重复读(Repeatable read)
事务级
可序列化(Serializable)
最高级别,事务级

最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Read committed和Serializable两个标准隔离级别,另外还提供自己定义的Read only隔离级别;SQL Server除支持上述ISO/ANSI SQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL 支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进一步介绍。

获取InnoDB行锁争用情况    

可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:

mysql> show status like 'innodb_row_lock%';

------------------------------- -------

| Variable_name                 | Value |

------------------------------- -------

| InnoDB_row_lock_current_waits | 0     |

| InnoDB_row_lock_time          | 0     |

| InnoDB_row_lock_time_avg      | 0     |

| InnoDB_row_lock_time_max      | 0     |

| InnoDB_row_lock_waits         | 0     |

------------------------------- -------

5 rows in set (0.01 sec)

如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。

具体方法如下:

mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB;

Query OK, 0 rows affected (0.14 sec)

然后就可以用下面的语句来进行查看:

mysql> Show innodb statusG;

***************************

  1. row ***************************

  Type: InnoDB

  Name:

Status:


TRANSACTIONS


Trx id counter 0 117472192

Purge done for trx's n:o < 0 117472190 undo n:o < 0 0

History list length 17

Total number of lock structs in row lock hash table 0

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456

MySQL thread id 200610, query id 291197 localhost root

---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936

MySQL thread id 199285, query id 291199 localhost root

Show innodb status

监视器可以通过发出下列语句来停止查看:

mysql> DROP TABLE innodb_monitor;

Query OK, 0 rows affected (0.05 sec)

设置监视器后,在SHOW INNODB STATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。

InnoDB的行锁模式及加锁方法

InnoDB实现了以下两种类型的行锁。

  • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
  • 排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。

  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

上述锁模式的兼容情况具体如下表所示。

                                         InnoDB行锁模式兼容性列表

请求锁模式
   是否兼容
当前锁模式
X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容

如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。

意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。

  • 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。
  • 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。

用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。

在如下表所示的例子中,使用了SELECT ... IN SHARE MODE加锁后再更新记录,看看会出现什么情况,其中actor表的actor_id字段为主键。

  InnoDB存储引擎的共享锁例子

session_1 session_2
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)
当前session对actor_id=178的记录加share mode 的共享锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.01 sec)


其他session仍然可以查询记录,并也可以对该记录加share mode的共享锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.01 sec)
当前session对锁定的记录进行更新操作,等待锁:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
等待


其他session也对该记录进行更新操作,则会导致死锁退出:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
获得锁后,可以成功更新:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (17.67 sec)
Rows matched: 1  Changed: 1  Warnings: 0

    当使用SELECT...FOR UPDATE加锁后再更新记录,出现如下表所示的情况。

 InnoDB存储引擎的排他锁例子

session_1 session_2
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)
当前session对actor_id=178的记录加for update的排它锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)


其他session可以查询该记录,但是不能对该记录加共享锁,会等待获得锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE    |
---------- ------------ -----------
1 row in set (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
等待
当前session可以对锁定的记录进行更新操作,更新后释放锁:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0
mysql> commit;
Query OK, 0 rows affected (0.01 sec)


其他session获得锁,得到其他session提交的记录:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
---------- ------------ -----------
| actor_id | first_name | last_name |
---------- ------------ -----------
| 178      | LISA       | MONROE T  |
---------- ------------ -----------
1 row in set (9.59 sec)

InnoDB行锁实现方式

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!

在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。

(1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。

在如下所示的例子中,开始tab_no_index表没有索引:

mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb;

Query OK, 0 rows affected (0.15 sec)

mysql> insert into tab_no_index values(1,'1'),(2,'2'),(3,'3'),(4,'4');

Query OK, 4 rows affected (0.00 sec)

Records: 4  Duplicates: 0  Warnings: 0

   InnoDB存储引擎的表在不使用索引时使用表锁例子

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 1 ;
------ ------
| id   | name |
------ ------
| 1    | 1    |
------ ------
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 2 ;
------ ------
| id   | name |
------ ------
| 2    | 2    |
------ ------
1 row in set (0.00 sec)
mysql> select * from tab_no_index where id = 1 for update;
------ ------
| id   | name |
------ ------
| 1    | 1    |
------ ------
1 row in set (0.00 sec)


mysql> select * from tab_no_index where id = 2 for update;
等待

在如上表所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情况下,InnoDB只能使用表锁。当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如下表所示。

创建tab_with_index表,id字段有普通索引:

mysql> create table tab_with_index(id int,name varchar(10)) engine=innodb;

Query OK, 0 rows affected (0.15 sec)

mysql> alter table tab_with_index add index id(id);

Query OK, 4 rows affected (0.24 sec)

Records: 4  Duplicates: 0  Warnings: 0

   InnoDB存储引擎的表在使用索引时使用行锁例子

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 ;
------ ------
| id   | name |
------ ------
| 1    | 1    |
------ ------
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 2 ;
------ ------
| id   | name |
------ ------
| 2    | 2    |
------ ------
1 row in set (0.00 sec)
mysql> select * from tab_with_index where id = 1 for update;
------ ------
| id   | name |
------ ------
| 1    | 1    |
------ ------
1 row in set (0.00 sec)


mysql> select * from tab_with_index where id = 2 for update;
------ ------
| id   | name |
------ ------
| 2    | 2    |
------ ------
1 row in set (0.00 sec)

(2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。应用设计的时候要注意这一点。

在如下表所示的例子中,表tab_with_index的id字段有索引,name字段没有索引:

mysql> alter table tab_with_index drop index name;

Query OK, 4 rows affected (0.22 sec)

Records: 4  Duplicates: 0  Warnings: 0

mysql> insert into tab_with_index  values(1,'4');

Query OK, 1 row affected (0.00 sec)

mysql> select * from tab_with_index where id = 1;

------ ------

| id   | name |

------ ------

| 1    | 1    |

| 1    | 4    |

------ ------

2 rows in set (0.00 sec)

   InnoDB存储引擎使用相同索引键的阻塞例子       

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 and name = '1' for update;
------ ------
| id   | name |
------ ------
| 1    | 1    |
------ ------
1 row in set (0.00 sec)


虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁:
mysql> select * from tab_with_index where id = 1 and name = '4' for update;
等待

(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

在如下表所示的例子中,表tab_with_index的id字段有主键索引,name字段有普通索引:

mysql> alter table tab_with_index add index name(name);

Query OK, 5 rows affected (0.23 sec)

Records: 5  Duplicates: 0  Warnings: 0

  InnoDB存储引擎的表使用不同索引的阻塞例子

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 for update;
------ ------
| id   | name |
------ ------
| 1    | 1    |
| 1    | 4    |
------ ------
2 rows in set (0.00 sec)


Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁:
mysql> select * from tab_with_index where name = '2' for update;
------ ------
| id   | name |
------ ------
| 2    | 2    |
------ ------
1 row in set (0.00 sec)

由于访问的记录已经被session_1锁定,所以等待获得锁。:
mysql> select * from tab_with_index where name = '4' for update;

(4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。

在下面的例子中,检索值的数据类型与索引字段不同,虽然MySQL能够进行数据类型转换,但却不会使用索引,从而导致InnoDB使用表锁。通过用explain检查两条SQL的执行计划,我们可以清楚地看到了这一点。

例子中tab_with_index表的name字段有索引,但是name字段是varchar类型的,如果where条件中不是和varchar类型进行比较,则会对name进行类型转换,而执行的全表扫描。

mysql> alter table tab_no_index add index name(name);

Query OK, 4 rows affected (8.06 sec)

Records: 4  Duplicates: 0  Warnings: 0

mysql> explain select * from tab_with_index where name = 1 G

***************************

  1. row ***************************

           id: 1

  select_type: SIMPLE

        table: tab_with_index

         type: ALL

possible_keys: name

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 4

        Extra: Using where

1 row in set (0.00 sec)

mysql> explain select * from tab_with_index where name = '1' G

***************************

  1. row ***************************

           id: 1

  select_type: SIMPLE

        table: tab_with_index

         type: ref

possible_keys: name

          key: name

      key_len: 23

          ref: const

         rows: 1

        Extra: Using where

1 row in set (0.00 sec)

间隙锁(Next-Key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举例来说,假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL:

Select * from  emp where empid > 100 for update;

是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。

InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对锁机制的影响,以及不同隔离级别下InnoDB使用间隙锁的情况,在后续的章节中会做进一步介绍。

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁!

在如下表所示的例子中,假如emp表中只有101条记录,其empid的值分别是1,2,......,100,101。

               InnoDB存储引擎的间隙锁阻塞例子

session_1 session_2
mysql> select @@tx_isolation;
-----------------
| @@tx_isolation  |
-----------------
| REPEATABLE-READ |
-----------------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select @@tx_isolation;
-----------------
| @@tx_isolation  |
-----------------
| REPEATABLE-READ |
-----------------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
当前session对不存在的记录加for update的锁:
mysql> select * from emp where empid = 102 for update;
Empty set (0.00 sec)


这时,如果其他session插入empid为102的记录(注意:这条记录并不存在),也会出现锁等待:
mysql>insert into emp(empid,...) values(102,...);
阻塞等待
Session_1 执行rollback:
mysql> rollback;
Query OK, 0 rows affected (13.04 sec)


由于其他session_1回退后释放了Next-Key锁,当前session可以获得锁并成功插入记录:
mysql>insert into emp(empid,...) values(102,...);
Query OK, 1 row affected (13.35 sec)

恢复和复制的需要,对InnoDB锁机制的影响

MySQL通过BINLOG录执行成功的INSERT、UPDATE、DELETE等更新数据的SQL语句,并由此实现MySQL数据库的恢复和主从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在Slave Mysql不断做基于BINLOG的恢复)有以下特点。

l  一是MySQL的恢复是SQL语句级的,也就是重新执行BINLOG中的SQL语句。这与Oracle数据库不同,Oracle是基于数据库文件块的。

l  二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更新号(System Change Number,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。

从上面两点可知,MySQL的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读,这已经超过了ISO/ANSI SQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无论在Read Commited或是Repeatable Read隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。

另外,对于“insert  into target_tab select * from source_tab where ...”和“create  table new_tab ...select ... From  source_tab where ...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如下表的例子。

                   CTAS操作给原表加锁例子

session_1 session_2
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5  Duplicates: 0  Warnings: 0


mysql> update source_tab set name = '1' where name = '8';
等待
commit;

返回结果
commit;

在上面的例子中,只是简单地读 source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以了。ORACLE正是这么做的,它通过MVCC技术实现的多版本数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现了多版本数据,对普通的SELECT一致性读,也不需要加任何锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读技术!

MySQL为什么要这么做呢?其原因还是为了保证恢复和复制的正确性。因为不加锁的话,如果在上述语句执行过程中,其他事务对source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行事务前,先将系统变量 innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如下表所示。

                  CTAS操作不给原表加锁带来的安全问题例子

session_1 session_2
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql>set innodb_locks_unsafe_for_binlog='on'
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5  Duplicates: 0  Warnings: 0


session_1未提交,可以对session_1的select的记录进行更新操作。
mysql> update source_tab set name = '8' where name = '1';
Query OK, 5 rows affected (0.00 sec)
Rows matched: 5  Changed: 5  Warnings: 0
mysql> select * from source_tab where name = '8';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
---- ------ ----
5 rows in set (0.00 sec)

更新操作先提交
mysql> commit;
Query OK, 0 rows affected (0.05 sec)
插入操作后提交
mysql> commit;
Query OK, 0 rows affected (0.07 sec)

此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑:
mysql> select * from source_tab where name = '8';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> select * from target_tab;
------ ------
| id   | name |
------ ------
| 4    | 1.00 |
| 5    | 1.00 |
| 6    | 1.00 |
| 7    | 1.00 |
| 8    | 1.00 |
------ ------
5 rows in set (0.00 sec)
mysql> select * from tt1 where name = '1';
Empty set (0.00 sec)
mysql> select * from source_tab where name = '8';
---- ------ ----
| d1 | name | d2 |
---- ------ ----
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
---- ------ ----
5 rows in set (0.00 sec)
mysql> select * from target_tab;
------ ------
| id   | name |
------ ------
| 4    | 1.00 |
| 5    | 1.00 |
| 6    | 1.00 |
| 7    | 1.00 |
| 8    | 1.00 |
------ ------
5 rows in set (0.00 sec)

从上可见,设置系统变量innodb_locks_unsafe_for_binlog的值为“on”后,InnoDB不再对source_tab加锁,结果也符合应用逻辑,但是如果分析BINLOG的内容:

......

SET TIMESTAMP=1169175130;

BEGIN;

# at 274

#070119 10:51:57 server id 1  end_log_pos 105   Query   thread_id=1     exec_time=0     error_code=0

SET TIMESTAMP=1169175117;

update source_tab set name = '8' where name = '1';

# at 379

#070119 10:52:10 server id 1  end_log_pos 406   Xid = 5

COMMIT;

# at 406

#070119 10:52:14 server id 1  end_log_pos 474   Query   thread_id=2     exec_time=0     error_code=0

SET TIMESTAMP=1169175134;

BEGIN;

# at 474

#070119 10:51:29 server id 1  end_log_pos 119   Query   thread_id=2     exec_time=0     error_code=0

SET TIMESTAMP=1169175089;

insert into target_tab select d1,name from source_tab where name = '1';

# at 593

#070119 10:52:14 server id 1  end_log_pos 620   Xid = 7

COMMIT;

......

    可以发现,在BINLOG中,更新操作的位置在INSERT...SELECT之前,如果使用这个BINLOG进行数据库恢复,恢复的结果与实际的应用逻辑不符;如果进行复制,就会导致主从数据库不一致!

通过上面的例子,我们就不难理解为什么MySQL在处理“Insert  into target_tab select * from source_tab where ...”和“create  table new_tab ...select ... From  source_tab where ...”时要给source_tab加锁,而不是使用对并发影响最小的多版本数据来实现一致性读。还要特别说明的是,如果上述语句的SELECT是范围条件,InnoDB还会给源表加间隙锁(Next-Lock)。

因此,INSERT...SELECT...和 CREATE TABLE...SELECT...语句,可能会阻止对源表的并发更新,造成对源表锁的等待。如果查询比较复杂的话,会造成严重的性能问题,我们在应用中应尽量避免使用。实际上,MySQL将这种SQL叫作不确定(non-deterministic)的SQL,不推荐使用。

如果应用中一定要用这种SQL来实现业务逻辑,又不希望对源表的并发更新产生影响,可以采取以下两种措施:

  • 一是采取上面示例中的做法,将innodb_locks_unsafe_for_binlog的值设置为“on”,强制MySQL使用多版本数据一致性读。但付出的代价是可能无法用binlog正确地恢复或复制数据,因此,不推荐使用这种方式。
  • 二是通过使用“select * from source_tab ... Into outfile”和“load data infile ...”语句组合来间接实现,采用这种方式MySQL不会给source_tab加锁。

InnoDB在不同隔离级别下的一致性读及锁的差异

前面讲过,锁和多版本数据是InnoDB实现一致性读和ISO/ANSI SQL92隔离级别的手段,因此,在不同的隔离级别下,InnoDB处理SQL时采用的一致性读策略和需要的锁是不同的。同时,数据恢复和复制机制的特点,也对一些SQL的一致性读策略和锁策略有很大影响。将这些特性归纳成如下表所示的内容,以便读者查阅。

                                          InnoDB存储引擎中不同SQL在不同隔离级别下锁比较

隔离级别

        一致性读和锁

SQL

Read Uncommited

Read Commited

Repeatable Read

Serializable

SQL

条件

select

相等

None locks

Consisten read/None lock

Consisten read/None lock

Share locks

范围

None locks

Consisten read/None lock

Consisten read/None lock

Share Next-Key

update

相等

exclusive locks

exclusive locks

exclusive locks

Exclusive locks

范围

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

Insert

N/A

exclusive locks

exclusive locks

exclusive locks

exclusive locks

replace

无键冲突

exclusive locks

exclusive locks

exclusive locks

exclusive locks

键冲突

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

delete

相等

exclusive locks

exclusive locks

exclusive locks

exclusive locks

范围

exclusive next-key

exclusive next-key

exclusive next-key

exclusive next-key

Select ... from ... Lock in share mode

相等

Share locks

Share locks

Share locks

Share locks

范围

Share locks

Share locks

Share Next-Key

Share Next-Key

Select * from ... For update

相等

exclusive locks

exclusive locks

exclusive locks

exclusive locks

范围

exclusive locks

Share locks

exclusive next-key

exclusive next-key

Insert into ... Select ...

(指源表锁)

innodb_locks_unsafe_for_binlog=off

Share Next-Key

Share Next-Key

Share Next-Key

Share Next-Key

innodb_locks_unsafe_for_binlog=on

None locks

Consisten read/None lock

Consisten read/None lock

Share Next-Key

create table ... Select ...

(指源表锁)

innodb_locks_unsafe_for_binlog=off

Share Next-Key

Share Next-Key

Share Next-Key

Share Next-Key

innodb_locks_unsafe_for_binlog=on

None locks

Consisten read/None lock

Consisten read/None lock

Share Next-Key

从上表可以看出:对于许多SQL,隔离级别越高,InnoDB给记录集加的锁就越严格(尤其是使用范围条件的时候),产生锁冲突的可能性也就越高,从而对并发性事务处理性能的影响也就越大。因此,我们在应用中,应该尽量使用较低的隔离级别,以减少锁争用的机率。实际上,通过优化事务逻辑,大部分应用使用Read Commited隔离级别就足够了。对于一些确实需要更高隔离级别的事务,可以通过在程序中执行SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ或SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE动态改变隔离级别的方式满足需求。

什么时候使用表锁

对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁。

  • 第一种情况是:事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。
  • 第二种情况是:事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。

当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。

在InnoDB下,使用表锁要注意以下两点。

(1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、innodb_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死锁。有关死锁,下一小节还会继续讨论。

(2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。正确的方式见如下语句:

澳门新萄京官方网站复苏和复制的需求,Mysql锁的优化。例如,如果需要写表t1并从表t读,可以按如下做:

SET AUTOCOMMIT=0;

LOCK TABLES t1 WRITE, t2 READ, ...;

[do something with tables t1 and t2 here];

COMMIT;

UNLOCK TABLES;

关于死锁

上文讲过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了在InnoDB中发生死锁是可能的。如下所示的就是一个发生死锁的例子。

 InnoDB存储引擎中的死锁例子

session_1 session_2
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...
做一些其他处理...
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
...
select * from table_2 where id =1 for update;
因session_2已取得排他锁,等待
做一些其他处理...

mysql> select * from table_1 where where id=1 for update;
死锁

在上面的例子中,两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数 innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法。

(1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。在下面的例子中,由于两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可以避免。

       InnoDB存储引擎中表顺序造成的死锁例子

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select first_name,last_name from actor where actor_id = 1 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| PENELOPE   | GUINESS   |
------------ -----------
1 row in set (0.00 sec)


mysql> insert into country (country_id,country) values(110,'Test');
Query OK, 1 row affected (0.00 sec)
mysql>  insert into country (country_id,country) values(110,'Test');
等待


mysql> select first_name,last_name from actor where actor_id = 1 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| PENELOPE   | GUINESS   |
------------ -----------
1 row in set (0.00 sec)
mysql>  insert into country (country_id,country) values(110,'Test');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

(2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。

       InnoDB存储引擎中表数据操作顺序不一致造成的死锁例子

session_1 session_2
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select first_name,last_name from actor where actor_id = 1 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| PENELOPE   | GUINESS   |
------------ -----------
1 row in set (0.00 sec)


mysql> select first_name,last_name from actor where actor_id = 3 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| ED         | CHASE     |
------------ -----------
1 row in set (0.00 sec)
mysql> select first_name,last_name from actor where actor_id = 3 for update;
等待


mysql> select first_name,last_name from actor where actor_id = 1 for update;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
mysql> select first_name,last_name from actor where actor_id = 3 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| ED         | CHASE     |
------------ -----------
1 row in set (4.71 sec)

(3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。

       (4)前面讲过,在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题,如下所示。

  InnoDB存储引擎中隔离级别引起的死锁例子1

session_1 session_2
mysql> select @@tx_isolation;
-----------------
| @@tx_isolation  |
-----------------
| REPEATABLE-READ |
-----------------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select @@tx_isolation;
-----------------
| @@tx_isolation  |
-----------------
| REPEATABLE-READ |
-----------------
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
当前session对不存在的记录加for update的锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)


其他session也可以对不存在的记录加for update的锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
因为其他session也对该记录加了锁,所以当前的插入会等待:
mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');
等待


因为其他session已经对记录进行了更新,这时候再插入记录就会提示死锁并退出:
mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
由于其他session已经退出,当前session可以获得锁并成功插入记录:
mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (13.35 sec)

(5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。

对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁,如下所示。

   InnoDB存储引擎中隔离级别引起的死锁例子2

session_1 session_2 session_3
mysql> select @@tx_isolation;
----------------
| @@tx_isolation |
----------------
| READ-COMMITTED |
----------------
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
mysql> select @@tx_isolation;
----------------
| @@tx_isolation |
----------------
| READ-COMMITTED |
----------------
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
mysql> select @@tx_isolation;
----------------
| @@tx_isolation |
----------------
| READ-COMMITTED |
----------------
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
Session_1获得for update的共享锁:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
由于记录不存在,session_2也可以获得for update的共享锁:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)

Session_1可以成功插入记录:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (0.00 sec)



Session_2插入申请等待获得锁:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
等待

Session_1成功提交:
mysql> commit;
Query OK, 0 rows affected (0.04 sec)



Session_2获得锁,发现插入记录主键重,这个时候抛出了异常,但是并没有释放共享锁:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
ERROR 1062 (23000): Duplicate entry '201' for key 'PRIMARY'



Session_3申请获得共享锁,因为session_2已经锁定该记录,所以session_3需要等待:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
等待

这个时候,如果session_2直接对记录进行更新操作,则会抛出死锁的异常:
mysql> update actor set last_name='Lan' where actor_id = 201;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction



Session_2释放锁后,session_3获得锁:
mysql> select first_name, last_name from actor where actor_id = 201 for update;
------------ -----------
| first_name | last_name |
------------ -----------
| Lisa       | Tom       |
------------ -----------
1 row in set (31.12 sec)

尽管通过上面介绍的设计和SQL优化等措施,可以大大减少死锁,但死锁很难完全避免。因此,在程序设计中总是捕获并处理死锁异常是一个很好的编程习惯。

如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因。返回结果中包括死锁相关事务的详细信息,如引发死锁的SQL语句,事务已经获得的锁,正在等待什么锁,以及被回滚的事务等。据此可以分析死锁产生的原因和改进措施。下面是一段SHOW INNODB STATUS输出的样例:

mysql> show innodb status G

…….


LATEST DETECTED DEADLOCK


070710 14:05:16

*** (1) TRANSACTION:

TRANSACTION 0 117470078, ACTIVE 117 sec, process no 1468, OS thread id 1197328736 inserting

mysql tables in use 1, locked 1

LOCK WAIT 5 lock struct(s), heap size 1216

MySQL thread id 7521657, query id 673468054 localhost root update

insert into country (country_id,country) values(110,'Test')

………

*** (2) TRANSACTION:

TRANSACTION 0 117470079, ACTIVE 39 sec, process no 1468, OS thread id 1164048736 starting index read, thread declared inside InnoDB 500

mysql tables in use 1, locked 1

4 lock struct(s), heap size 1216, undo log entries 1

MySQL thread id 7521664, query id 673468058 localhost root statistics

select first_name,last_name from actor where actor_id = 1 for update

*** (2) HOLDS THE LOCK(S):

………

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

………

*** WE ROLL BACK TRANSACTION (1)

……

内存刷新到磁盘的机制,redo,脏页,binlog的刷新条件

Lock_trx_id:事务ID

各种线程的作用,master_thread,purge_thread,redo log thread,read thread,write thread,page cleaner thread

LOCK_MODE:锁的模式

磁盘中存放着数据文件,redo log,undo log,binlog

LOCK_TYPE:所得类型表锁还是行锁

 

LOCK_TABLE:要加锁的表

Question  4:

LOCK_INDEX:锁的索引

mysql有哪些索引类型:

LOCK_SPACE:innodb存储引擎表空间ID号

  1. 数据结构角度上可以分:B tree索引,hash索引,fulltext索引(innodb,myisam都支持)

  2. 存储角度上可以分:聚集索引,非聚集索引

  3. 逻辑角度上可以分:primary key,normal key,单列,复合,覆盖索引

     

     

LOCK_PAGE:被锁住的页的数量,若是表锁,则该值为null

 

LOCK_REC:被锁住行的数量,若是表锁则该值为NULL

Question  5:

LOCK_DATA:被锁住的行的主键值,若是表锁时,则该值为NULL;

mysql binlog有几种格式:

通过select* from information_schema.INNODB_LOCK可查看

  1. statement

innodb_lock_waits

    优点:不需要记录每一行的变化,减少了binlog日志量,节约了IO,提高性能

Requesting_trx_id:申请资源的事务ID

    缺点:当使用一些特殊函数的时候,或者跨库操作的时候容易丢失数据

Request_lock_id:申请锁的ID

注:在生产中不建议使用

Blocking_trx_id:阻塞锁的ID

  1. row

哪个事务被哪个事务阻塞很明显通过该innodb_lock_waits看

    优点:清晰记录每行的数据信息,不会出现跨库丢数据的情况

一致性非锁定在MVCC读取当前数据库里面的数据在读取的数据正在被修改不会产生锁等待(对当前数据拍照片)读没有加锁 没有加共享锁 没有被阻塞

    缺点:内容当记录到日志中的时候,都将以每行记录的修改来记录,但就会产生大量的binlog,对于网络开销也比较大

访问不同的记录不会发生等待 由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然时访问不同的行记录。但是如果是使用相同的索引键,会出现锁冲突的,应用设计的时候要注意

注:生产中推荐使用

不同隔离级别,和不同索引类型的加锁处理分析

 

澳门新萄京官方网站 1

结论:

RR   2.innodb_locks_unsafe_for_binlog=0

1.任何辅助索引上的锁,或者非索引列上的锁,最终都要回溯到主键上,在主键上也要加一把锁

2.任何叶子节点上的S或X锁之前,都会在根节点上加一个IS或IX锁,也就是表级别的IS,IX锁

3.主键索引=record lock(但外键约束,唯一性约束检测仍然使用 gap lock)

4.唯一辅助索引=record lock(但外键约束,唯一性约束检测仍然使用 gap lock)

5.非唯一辅助索引=next-key-lock(RC隔离级别=record lock)

Recordlock:单个记录上的锁,至少锁定一行记录;

Gap lock(间隙锁):在索引记录间隙上的锁,或者是第一条索引记录之前,最后一条索引记录之后上的间隙锁(两条记录中间的缝隙) 锁定两个记录中间的缝隙;

Next-keylock(下一键锁)索引记录锁以及索引记录之间的间隙锁,二者的组合锁;

记录锁至少锁定一条记录(普通,主键,唯一 索引)或是无任何索引innodb会对rowid加锁(左右两边加自身的记录);

设置RC隔离级别或者是启用innodb_lock_unsafe_for_binlog的其他影响

1.在mysql评估完where条件后,会释放找不到相应记录的记录锁

2.在update语句中,innodb使用“半一致性读“,会返回提交后的最新版本号,以便判是否匹配update语句中的where条件

gap lock避免幻读:

假设一个SQL:select * from child where id>=100 for update;

Id字段当前有2个值:90,102 这时候gap是90----102之间,如果只有recode lock 就没办法再阻止101这个id (就会发生幻读再次读取后可以看到101这个id值);

有了next-key lock后,可以阻止写入101这个id确保两次读取的结果是一样的,不会发生幻读;

有唯一属性索引时,就无需使用gap lock(扫描包含多个字段的唯一索引中的部分字段除外);

还有一种叫做意向插入(insertionintention)的gap lock,如果两个事务往同一个gap lock中写入数据,但写入位置不一样时,是无须等待,可以直接写入因此没有冲突

设定pkid =3

T1:insert into t(pkid)values(4)

T2:insert into t (pkid) values(5)

Gap lock仅用于防止往gap上写入新记录(避免幻读),因此无论是S-GAP 还是X-GAP锁其实作用是一样的。

Innode引擎监控的开启的方法   
锁监控:
打开innodb的锁监控:
CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;    
5.6.16可以使用:  --两个都需要打开
set GLOBAL innodb_status_output=ON;
set GLOBAL innodb_status_output_locks=ON; 
表空间监控:  
打开innodb表空间监控:
CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;
表监控:
打开innodb表监控:
CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;
打开监视器以后
innodb_monitor和innodb_lock_monitor会每隔15秒会向错误日志中记录InnoDB监控信息;
innodb_table_monitor和innodb_tablespace_monitor是每隔64秒;
innodb_monitor和innodb_lock_monitor两种监视器的输出结果基本类似,后者会有更多关于锁的信息,而前一个实际上就是show innodb status;
innodb_table_monitor会将系统中所有innodb的表的一些结构和内部信息输出;
innodb_tablespace_monitor输出的是tablespace的信息,注意该monitor输出的只是共享表空间的信息,如果使用innodb_file_per_table为每个表使用独立的表空间,则这些表空间的信息是不会包含在输出中的。
停止InnoDB监控
drop table innodb_monitor;
drop table innodb_lock_monitor;
drop table innodb_table_monitor;
drop table innodb_tablespace_monitor;
重点的锁类型
如果辅助索引上的搜索及锁定是排它的,则会取回其相应的聚集索引,并且在它上面加锁;
对无索引的字段检索更新时升级成表级别锁(表中全部记录被锁,除非在RC或innodb_locks_unsafe_for_binlog=1 模式下 采用semi-consitent read机制);
insert into T select … from S where T表上排它record lock 事务隔离级别为RC或者启用innodb_locks_unsafe_for_binlog并且隔离级别不是serializable时,S表上采用无锁一致性读,否则(rr),加排它next-key lock(RC不加锁。RR加next-key lock);
insert 排它record lock,而非next-key lock,但在写入新记录之前需要加意向gap lock(insertion intention gap lock);
insert…on duplicate key update 排它next-key lock(即使被update的记录上)会同时并发执行;
create table…select 和insert…select 一样;
replace 没冲突/重复时 和insert一样 否则(有冲突时先delete后insert)加next-key-lock;
replace into t select … from S where 或者update T … where col IN(SELECT…FROM S..),都会在S表上加next-key lock;
auto..increment列上写新数据时,索引末尾设置排它锁,请求自增列计数器时,INNODB使用一个AUTO-INC表锁,只对请求的那个SQL有影响,不会影响整个事务,该锁被持有时,其他会话不能往INNODB表中写入新行;
select…from 一致性非锁定读除非是serializable隔离级别,在其影响的索引记录上设置一个共享锁(简单的select…from是不加锁的);
lock in shared mode,使用共享next-key lock;
for update使用排它next-key lock锁,会阻止lock in shared mode请求;
update/delete,排它next-key lock.
死锁 
死锁不会卡,有一个会立刻回滚,再次提交即可,show engine innodb status 只显示最后死锁的信息,设置innodb_print_all_deadlocks=1,在日志中记录全部死锁信息;
自动检测死锁,并优先回滚最小事务(影响较小的事务),加表锁时,不会发生死锁;
事务中如果select调用存储函数/存储过程失败了,对用的SQL会回滚事务,如果再显示执行ROLLBACK,那么整个事务都回滚;
事务回滚时,会释放全部的锁,个别情况下,如果个别SQL因为某些错误回滚事务的话它所持有的行锁可能无法释放,因为INNODB的行锁信息并没有记录时那个SQL持有的,这时候建议执行一次显示的ROLL BACK。
避免死锁
事务尽快提交,小事务越不容易发生死锁;
加for update lock in shared mode读锁时最好降低事务隔离级别,例如用RC级别降低死锁发生概率;
事务中涉及多个表,或者涉及多行记录时,每个事务的操作顺序都要保持一致,降低死锁发生概率,最好用存储过程/存储函数固化;
通过索引等方式优化SQL效率,降低死锁发生概率,减少扫描/锁范围,降低概率。

 

 

 

 

 

  1. mixed

    是mysql5.1的时候,一个过渡版本,DDL语句会记录成statement,DML会记录row。

注:生产中不建议使用

 

Qusetion 6:

mysql主从复制的具体原理是什么?

主 服务器把数据更新记录到二进制日志中,从服务器通过io thread向主库发起binlog请求,主服务器通过IO dump thread把二进制日志传递给从库,从库通过io thread记录到自己的中继日志中。然后再通过sql thread应用中继日志中sql的内容。

 

澳门新萄京官方网站,Qusetion 7:

数据库中双一是什么?

sync_binlog=1

innodb_flush_log_at_trx_commit=1

innodb_flush_log_at_trx_commit和sync_binlog 两个参数是控制MySQL 磁盘写入策略以及数据安全性的关键参数

innodb_flush_log_at_trx_commit设置为1,每次事务提交时MySQL都会把log buffer的数据写入log file,并且刷到磁盘中去。

sync_binlog =N (N>0) ,MySQL 在每写 N次 二进制日志binary log时,会使用fdatasync()函数将它的写二进制日志binary log同步到磁盘中去

 

Qusetion 8:

如何监控mysql  replication复制延迟?

  1. 可以通过第三方工具 业界中的瑞士军刀percona-toolkit中的命令,pt-heartbeat进行主从延迟监控。

  2. 传统方法,通过比较主从服务器之间的position号的差异值。

  3. 还可以通过查看seconds_behind_master估算一下主从延迟时间

     

 

Qusetion  9:

大表DDL语句,如何实施,才能把性能影响降到最低?

  1. 可以通过传统方法导入导出数据,新建一张与原表一样的表结构,把需要执行的ddl语句在无数据的新表执行,然后把老表中的数据导入到新表中,把新表改成老表的名字

  2. 通过第三方工具 业界中的瑞士军刀percona-toolkit中的命令,pt-online-schema-change进行在线操作

  3. 对于新版本的mysql(5.7)可以直接在线online ddl

 

Qusetion  10:

为什么要为innodb表设置自增列做主键?

1.使用自增列做主键,写入顺序是自增的,和B 数叶子节点分裂顺序一致

2.表不指定自增列做主键,同时也没有可以被选为主键的唯一索引,InnoDB就会选择内置的rowid作为主键,写入顺序和rowid增长顺序一致

所以InnoDB表的数据写入顺序能和B 树索引的叶子节点顺序一致的话,这时候存取效率是最高

 

Qusetion  11:

如何优化一条有问题的sql语句?

针对sql语句的优化,我们不要上来就回答添加索引,这样显得太不专业。我们可以从如下几个角度去分析

  1. 回归到表的设计层面,数据类型选择是否合理

  2. 大表碎片的整理是否完善

  3. 表的统计信息,是不是准确的

  4. 审查表的执行计划,判断字段上面有没有合适的索引

  5. 针对索引的选择性,建立合适的索引(就又涉及到大表DDL的操作问题)

 

Qusetion  12:

服务器负载过高或者网页打开缓慢,简单说说你的优化思路 ?

  1. 首先我们要发现问题的过程,通过操作系统,数据库,程序设计,硬件角度四个维度找到问题所在

  2. 找到瓶颈点的位置

  3. 制定好优化方案,形成处理问题的体系

  4. 体系制定好之后,在测试环境进行优化方案的测试

  5. 测试环境如果优化效果很好,再实施到生产环境

  6. 做好处理问题的记录

 

Qusetion  13:

接触过哪些mysql的主流架构?架构应用中有哪些问题需要考虑?

  1. M-S

  2. MHA

  3. MM keepalived

  4. PXC

共同存在的问题:主从延迟问题的存在,在主库宕机,切换过程中要考虑数据一致性的问题,避免出现主从复制不一致

 

Qusetion14:

什么是死锁?锁等待?如何优化这类问题?通过数据库哪些表可以监控?

死锁是指两个或多个事务在同一资源上互相占用,并请求加锁时,而导致的恶性循环现象。当多个事务以不同顺序试图加锁同一资源时,就会产生死锁。

锁等待:mysql数据库中,不同session在更新同行数据中,会出现锁等待

重要的三张锁的监控表innodb_trx,innodb_locks,innodb_lock_waits

 

Qusetion  15:

处理过mysql哪些案例

我们可以简单从mysql四个知识模块跟他聊聊mysql体系结构,数据备份恢复,优化,高可用集群架构

  1. mysql版本的升级

  2. 处理mysql集群的各种坑和问题

  3. 根据公司业务类型,设计合理mysql库,表,架构。

  4. 定期进行灾备恢复演练

  5. 误删除数据之后,恢复数据

本文由澳门新萄京官方网站发布于数据库网络,转载请注明出处:澳门新萄京官方网站复苏和复制的需求,Mysql锁的

关键词: